Crystal Precipitation and Dissolution in a Thin Strip∗
نویسنده
چکیده
A two-dimensional micro-scale model for crystal dissolution and precipitation in a porous medium is presented. The local geometry of the pore is represented as a thin strip. The model allows for changes in the pore volume. A formal limiting argument leads to a system of 1D effective upscaled equations. The effective equations allow for travelling wave solutions. Existence and uniqueness of these travelling wave solutions are proven. Numerical solutions of the effective equations are compared with numerical solutions of the original equations on the thin strip and with analytical results. Also a comparison is made with a model from the literature that does not allow changes in the pore volume.
منابع مشابه
Crystal Dissolution and Precipitation in Porous Media: Pore Scale Analysis
In this paper we discuss a pore scale model for crystal dissolution and precipitation in porous media. We consider first general domains, for which existence of weak solutions is proven. For the particular case of strips we show that free boundaries occur in the form of dissolution/precipitation fronts. As the ratio between the thickness and the length of the strip vanishes we obtain the upscal...
متن کاملCrystal Dissolution and Precipitation in Porous Media: L-contraction and Uniqueness
In this note we continue the analysis of the pore-scale model for crystal dissolution and precipitation in porous media proposed in [C. J. van Duijn and I. S. Pop, Crystal dissolution and precipitation in porous media: pore scale analysis, J. Reine Angew. Math. 577 (2004), 171–211]. There the existence of weak solutions was shown. We prove an L1-contraction property of the pore-scale model. As ...
متن کاملUpscaling of Nonisothermal Reactive Porous Media Flow under Dominant Péclet Number: The Effect of Changing Porosity
Motivated by rock-fluid interactions occurring in a geothermal reservoir, we present a two-dimensional pore scale model of a thin strip consisting of void space and grains, with fluid flow through the void space. Ions in the fluid are allowed to precipitate onto the grains, while minerals in the grains are allowed to dissolve into the fluid, taking into account the possible change in the apertu...
متن کاملIn-vitro – In-vivo Characterization of Glimepiride Lipid Nanoparticulates Prepared by Combined Approach of Precipitation and Complexation
Novel lipid nanoparticulates (NCs) were developed by a combined approach of precipitation and complexation with an aim to improve the solubility, stability and targeting efficiency of glimepiride (GLP). GLP NCs were prepared by precipitation process using PEG 20000 and further complexed with phospholipon90G (P90G). The NCs were evaluated for physicochemical characterization, such as drug lo...
متن کاملA New Crystal Engineering Technique for Dissolution Enhancement of Poorly Soluble Drugs Combining Quasi-emulsion and Crystallo-co Agglomeration Methods
A target of best dissolution improvement of poorly soluble drugs is a necessity for the success of formulation in industry. The present work describes the preparation, optimization, and evaluation of a new spherical agglomeration technique for glimepiride as a model of poorly soluble drugs. It involved the emulsification of a drug solution containing a dispersed carrier that tailors the crystal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007